Properties of the Resonance $\Lambda(1520)$ as Seen in the Forward Electroproduction at JLab Hall A

Igor Strakovsky (GW), Y. Qiang (Duke/JLab), Ya. Azimov (PNPI), W.J. Briscoe (GW), H. Gao (Duke U), D.W. Higinbotham (JLab), and V.V. Nelyubin (UVa)

- Where we are now
- JLab Hall A Experiment
- BW Analysis
- Pole Position
- Summary

MENU2010, June 2010

Where we are now - PDG08 [C. Amsler *et al.* [RPP] Phys Lett B 667, 1 (2008)]

$$I(J^{P}) = O(\frac{3}{2})$$
 Status: ****

- Discovered by <u>FERRO-LUZZI 62</u>; the elaboration in <u>WATSON 63</u> is the classic paper on the Breit-Wigner analysis of a multichannel resonance.
- Production and formation experiments agree quite well, so they are listed together here.

A(1520) MASS

∧ BARYON

(S = -1, I = 0)

 $\Lambda^0 = u d s$

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT				
1519.5 ±1.0 OUR EST	IMATE							$V = n - 2 = 0 \wedge (1520)$
1519.50±0.18 OUR AVERAGE							000	$K p = \mathfrak{m} M(1 2 C C)$
1517.3 ± 1.5	300	BARBER 80	D SPEC	$\gamma p \rightarrow \Lambda(1520) K^+$			800	
1519 ±1		GOPAL 80	DPWA	$\overline{K}N \rightarrow \overline{K}N$				
1517.8 ± 1.2	5k	BARLAG 79	HBC	К [—] р 4.2 GeV/с			F	\mathcal{T}
1520.0 ± 0.5		ALSTON 78	DPWA	$\overline{K}N \rightarrow \overline{K}N$				
1519.7 ± 0.3	4k	CAMERON 77	HBC	K ⁻ p 0.96–1.36 GeV/c		>	600 <u>–</u>	<i>\</i>
1519 ±1		GOPAL 77	DPWA	K N multichannel		/		/ -+
1519.4 ± 0.3	2000	CORDEN 75	DBC	K ⁻ d 1.4–1.8 GeV/c			-	
<i>А</i> (1520) WIDTH					f	400-	Ť Ť.	
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT		ţ		\neq $\overline{\nabla}$
15.6 ±1.0 OUR ESTI	MATE					eve A	-	/ *+
15.59±0.27 OUR AVER	AGE					ب س		
16.3 ± 3.3	300	BARBER 80	D SPEC	$\gamma p \rightarrow \Lambda(1520) K^+$		0	200-	
16 ±1		GOPAL 80	DPWA	$\overline{K}N \rightarrow \overline{K}N$		2		
14 ±3	677	¹ BARLAG 79	HBC	K ⁻ p 4.2 GeV/c		-	E-1	
15.4 ± 0.5		ALSTON 78	DPWA	$\overline{K}N \rightarrow \overline{K}N$				
16.3 ± 0.5	4k	CAMERON 77	HBC	K ⁻ p 0.96-1.36 GeV/c				
15.0 ± 0.5		GOPAL 77	DPWA	K N multichannel			2.16	2.21 2.26 2.31 2.36 2.41 2.46
15.5 ± 1.6	2000	CORDEN 75	DBC	K ⁻ d 1.4-1.8 GeV/c				(K ⁻ þ) Effective mass-squared(GeV/c ²) ²
			_			W/	Camero	n <i>et al</i> Nucl Phys B131 399 (1977)
 The latest 	exp	erimental	input	's in RPP for	the mass	•••		
and width	of th	ne $\Lambda(1520)$) are	dated befo	re 1980			

Current Parameters of the Λ(1520) [C. Amsler et al. [RPP] Phys Lett B 667, 1 (2008)]

- Works used different approaches:
 - In study various inelastic reactions
 - The distribution was described by BW (rel/non-rel) and non-coherent BG
 - Description of BG is different in different works
 - The Res width considered as energy dependent/independent
 - Interference effects with other resonances was taken into account differently
- Works neglected different threshold effects corresponding to other channels

• We extract Res parameters using high quality data and estimate a sensitivity of the treatment

Where we Are and What we are going to Do

Without any justification, all those papers, which assume Γ(W) of the Λ(1520), describe the total width as having the threshold behavior related only to the K-p channel
 Meanwhile, different thresholds, corresponding to other decay channels (e.g. πΣ), should also affect the W-dependence of the total width

 All the described approaches would be completely equivalent for an ideally narrow resonance
 But, for the case of a finite width, such as the Λ(1520), they should provide different results at some level of accuracy

 In what follows, we extract the resonance parameters from new measurements and estimate the sensitivity of our results to how the experimental data was treated

Jlab Hall A Experiment E04-012 [Y. Qiang et al Phys Rev C 75, 055208 (2007)]

Missing Mass Calibration

Same peak positions in 4 different quadrants of the same HRS, < 0.2 MeV

Extrapolation is a main source of uncertainties, ~1 MeV

MM Distribution for $\gamma^* p \rightarrow K^+ X @ E04-012$

Best-Fit Procedure [Y. Qiang et al arXiv:1003.5612 [hep-ph]

• We describe the MM spectra in the form:

 $\operatorname{Fit} = BW + BG$

• The BW contribution may be written as

In the non-relativistic form

In the relativistic form

 $BW = A_{BW} \ \Gamma(M_X) \ D(M_X)$ $D_{nrel}^{-1}(M_X) = (M_X - M_0)^2 + \Gamma^2(M_X)/4$

$$D_{rel}^{-1}(M_X) = (M_X^2 - M_0^2)^2 + M_0^2 \Gamma^2(M_X)$$

• **Resonances** (if any) are revealed in the MM distribution inclusively, being summed over all possible decay modes

Λ(1520) Decay Modes [C. Amsler *et al.* [RPP] Phys Lett B 667, 1 (2008)]

 Let us recall that the total width is the sum of partial ones for all decay channels

$$\begin{split} & \Gamma = \sum_{i} \Gamma_{i} \\ \hline & Mode & Fraction (\Gamma_{i}/\Gamma) \\ \hline & \Gamma_{1} & N\overline{K} & 45 \pm 1\% \\ \hline & \Gamma_{2} & \Sigma \pi & 42 \pm 1\% \\ \hline & \Gamma_{3} & \Lambda \pi \pi & 10 \pm 1\% \\ \hline & \Gamma_{4} & \Sigma(1385)\pi \\ \hline & \Gamma_{5} & \Sigma(1385)\pi(\to \Lambda \pi \pi) \\ \hline & \Gamma_{6} & \Lambda(\pi\pi)s\text{-wave} \\ \hline & \Gamma_{7} & \Sigma \pi \pi & 0.9 \pm 0.1\% \\ \hline & \Gamma_{8} & \Lambda \gamma & 0.85 \pm 0.15\% \\ \hline & \Gamma_{9} & \Sigma^{0}\gamma \end{split}$$

 Every partial width should have its own energy dependence, corresponding to the threshold and kinematical properties of the particular decay channel

Best-Fit Results [Y. Qiang et al arXiv:1003.5612 [hep-ph]

 $M_{BW} = M_0 \left[1 + \frac{1}{8} \left(\Gamma_0 / M_0 \right)^2 \right]$

$$\Gamma_{BW} = \Gamma_0 [1 - \frac{1}{8} (\Gamma_0 / M_0)^2]$$

Intermediate Conclusion I

• The width of $\Lambda(1520)$ is sufficiently small, so the relativistic and non-relativistic forms give practically the same M_0 and Γ_0 (at the present level of accuracy)

By definition, the Log-Likelihood fitting always provides a larger value of χ², than the min-χ² fitting
 However, formally they should be equivalent at asymptotically high statistics In this sense, the present statistics is not asymptotical yet (13k)

The differences for both M_0 and Γ_0 are comparable to the statistical uncertainties of those BW parameters In terms of χ^2 /dof, which is typically ~1.5 in our studies here the Log-Likelihood fitting is up to 0.05 higher than min- χ^2

 \bullet The M_0 has a smaller statistical uncertainty and is less affected by any change of fitting procedure than the Γ_0

S-matrix Pole corresponding to the Λ(1520) [Y. Qiang *et al* arXiv:1003.5612 [hep-ph]

• Finally, we are looking for a solution of

$$W_p = M_0 \left[1 - i \, \Gamma(W_p) / M_0 \, \right]^{1/2}$$

Its complex solution gives the pole mass $M_p = \operatorname{Re} W_p$ and width $\Gamma_p = -2 \operatorname{Im} W_p$

• We found that $M_p < M_{BW}$ and $\Gamma_p < \Gamma_{BW}$ with the mass difference exceeding the statistical uncertainty (min- χ^2 values)

$$M_p = 1518.8 \text{ MeV}, \quad \Gamma_p = 17.2 \text{ MeV}$$

 Such relation for masses may be rather general (model independent), as suggested by comparison with the mass pairs (BW and pole) shown for other resonances in Listings of RPP

Intermediate Conclusion II

• Let us evaluate $M_p - M_{BW} = -\frac{1}{4} M_0 \left(\Gamma_0 / M_0\right) \Gamma_0'$ and $\Gamma_p - \Gamma_{BW} = \frac{1}{8} \Gamma_0 \left(\Gamma_0 / M_0\right) \left(3\Gamma_0' - M_0 \Gamma_0''\right)$

 $\Gamma_0 = \Gamma(M_0) \quad \Gamma'_0 \equiv d \Gamma(M_X) / d M_X \quad \Gamma''_0 \equiv d^2 \Gamma(M_X) / (d M_X)^2 \quad \text{taken at } M_X = M_0$

Parametrically $\Gamma'_0 \sim \Gamma_0$ and $\Gamma''_0 \sim \Gamma_0$

• If M_0 is not far from threshold of a decay channel, the $\Gamma(M_X)$ is an increasing function near M_0 and $\Gamma_0' > 0$, providing $M_p < M_{BW}$

• Relation for the widths is less definite In accordance with our numerical solution all three main contributions lead to $\Gamma_p < \Gamma_{BW}$

Summary

	Mass (MeV)	Width (MeV)
PDG08 BW:	1519.5±1.0	15.6±1.0
Our BW:	1520.4±0.6(stat)±1.0(syst)	18.6±1.9(stat)±1.0(syst)
Our Pole:	1518.8	17.2

- \bullet Even without accounting for the systematic uncertainty, both M_0 and Γ_0 are in reasonable agreement with their RPP average
- It is worth to note, however, that the uncertainties in the later works are larger than those in all the earlier works
 This may hint that the uncertainties stated in the earlier works (MeV)
 (and, therefore, in the average) are too optimistic
- Having the BW mass and width, we also give the **first** estimate of the **pole** parameters for the $\Lambda(1520)$
- The pole values for both mass and width tend to be lower than the BW values
- If pretending to have width uncertainty <1 MeV, one should study details of BG

Mass	Width	Year	l
(MeV)	(MeV)		l
1517.3 ± 1.5	16.3 ± 3.3	1980	
1517.8 ± 1.2	14 ± 3	1979	1
1519.7 ± 0.3	16.3 ± 0.5	1977	1
1519.4 ± 0.3	15.5 ± 1.6	1975	1
1520.0 ± 0.5	15.4 ± 0.5	1978	1
1519 ± 1	15.0 ± 0.5	1977	
average 1519.5±1.0	average 15.6 ± 1.0	2008	-